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Abstract
Modern AI systems, from retrieval-augmented generation (RAG) workflows to task-oriented agents,
rely on high-quality retrieval over proprietary corpora. Recent theory ties embedding dimensionality
to what a single-vector retriever can represent, motivating specialization over universal scaling [12].
Large, general-purpose embedding models provide a strong baseline but are often not aligned
to domain-specific phrasing, abbreviations, and fine-grained distinctions. We study a targeted,
implementation-agnostic approach: adapting compact retrievers to a given knowledge base using
queries that reflect real user intent and a curriculum of hard negatives.
Under a Shared Evaluation Budget—Finance (SEC) top-K=5 with a cross-encoder reranker
returning the top 3 passages, Clinical top-K=5 with no reranker, UniProtKB top-K=2 with no
reranker, a shared GPT-4o-mini generator with max prompt tokens ≤ 3500, and identical AWS
t3.large instances (2 vCPUs, 8 GB RAM)—we observe quantitative, absolute improvements over
strong provider baselines. In the clinical domain (N = 97), our domain-tuned retriever improves
Faithfulness by +0.0575 [95% BCa CI: 0.0203, 0.1120] vs OpenAI and +0.0454 [0.0135, 0.0957] vs
Cohere, though the latter does not reach Holm-adjusted significance (p=0.0539); Answer Relevancy
improves by +0.0696 [0.0418, 0.1241] vs OpenAI and +0.0771 [0.0464, 0.1366] vs Cohere. In Finance
(N = 97), Faithfulness vs OpenAI shows a mean increase of +0.0641 that is not statistically significant
(Holm-adjusted p = 0.1652), while answer relevance improves significantly by +0.0575 [0.0264, 0.1145]
vs OpenAI and +0.0726 [0.0327, 0.1378] vs Cohere. In UniProtKB (N = 97), improvements are
+0.1176 (Faithfulness) and +0.1358 (Answer Relevancy) vs OpenAI; +0.0774 (Faithfulness) and
+0.0706 (Answer Relevancy) vs Cohere. Across domains, the largest gains are in Answer Relevancy
alongside sharply reduced catastrophic error/abstention rates (Clinical: 5/97 vs 1/97; UniProtKB:
15/97 vs 1/97).
Finally, recent theory formalizes the limits of single-vector retrievers: for a fixed embedding dimension
d, there exist top-k relevance patterns that cannot be represented, regardless of training data. Our
results show that a specialize-not-just-scale strategy—compact, domain-tuned retrievers paired with
a cross-encoder reranker—yields higher Faithfulness and Answer Relevancy on real corpora under
shared budgets [12, 13], while reducing downstream hallucinations through more precise retrieval.

1 Introduction
Takeaway Retrieval is the controllable lever in modern AI systems. Whether the downstream component
is a RAG pipeline or an agent acting in the world, answer quality is bounded by what is retrieved. Unlike
prompt length—which increases Time-to-First-Token and is linked to higher hallucination and factual
discrepancy rates—retrieval quality can be systematically engineered via indexing choices, query modeling,
and contrastive training with a curriculum of hard negatives. Our focus is therefore on making retrieval
precise under fixed budgets, not on ever-longer prompts or ever-larger general-purpose embedders.
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Thesis For domain-specific RAG, compact retrievers adapted to the target corpus through a curriculum
of hard negatives can improve Faithfulness and Answer Relevancy relative to strong general-purpose
baselines, under fixed computational budgets.

This paper demonstrates that modest, targeted fine-tuning of compact models yields measurable retrieval
improvements that translate directly to better downstream answer quality. We present a repeatable
pipeline for domain adaptation and provide empirical evidence from three distinct domains: clinical trials,
financial filings, and biological knowledge bases.

1.1 The Problem: Limits of General-Purpose Retrievers
Large models trained on general web data may underperform in specialized domains for several reasons:

1. Distribution Shift. Technical, financial, and scientific texts contain jargon, formal syntax, and
abbreviations that diverge from the distribution of general web text.

2. Query–Document Mismatch. Users in specialized fields ask questions using shorthand and
local vernacular, while source documents use formal language. Bridging this semantic gap requires
domain-specific training.

3. Negative Sampling Matters. While modern baselines use in-batch and mined hard negatives [1,
6], domain-specific "near-miss" negatives—passages that are lexically or semantically similar but
incorrect—are essential for learning fine-grained distinctions.

4. Operational Inefficiency. A common fallback for weak retrievers is to concatenate many marginally
relevant passages. This is computationally wasteful, increases Time-to-First-Token (TTFT), and can
heighten hallucinations by distracting the generator [4].

A note on theoretical limits. Recent theory shows a lower bound linking the embedding dimension
d and the number of top-k document combinations that can be represented by a single-vector retriever:
for any fixed d, there exist relevance patterns that cannot be realized, regardless of training data or
optimization. An empirical dataset (LIMIT) constructed from this theory demonstrates that even SoTA
embedders underperform on simple instantiations of these patterns. Implication: scaling dimensions
or training data alone will not guarantee universal retrieval. Practical systems should instead restrict
the task distribution and adopt architectures that reintroduce higher-resolution interactions (e.g., late
interaction or rerankers) alongside compact, domain-tuned dual encoders.1

2 Methodology: A Domain-Tuning Pipeline
Pipeline overview. We implement a repeatable pipeline that ingests raw documents, normalizes them,
models queries, and iteratively retrains compact retrievers. The indexing branch handles dense+sparse
construction, clustering, hard-negative mining, batching, evaluation, and serving. Dense and sparse
indices are refreshed after each adaptation epoch to align with the updated embeddings.

2.1 Data Readiness and Query Modeling
We ingest documents in common formats and normalize them into clean, provenance-preserving chunks.
We then model queries to reflect realistic user intent, augmenting observed questions with synthetic
paraphrases to cover terminology variants.

2.2 Contrastive Training with a Hard-Negative Curriculum
The core of our method is constructing (query, positive, hard_negative) triplets for contrastive
training. Hard negatives are passages that are semantically or lexically similar to the correct answer but
are definitively wrong. A curriculum that progresses from easy to near-miss hard negatives forces the
model to learn the nuanced boundaries of the domain. Each query is paired with multiple hard negatives
per batch to increase discrimination pressure and stabilize learning.

1See DeepMind’s LIMIT [12] for the bound and dataset; see also late-interaction evidence from ColBERT [13].
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Figure 1: Domain-tuning pipeline. Evaluation feeds harder negatives into subsequent adaptation
rounds while refreshed indices keep pace with the updated dual encoder.

Why this matters in practice. Dense retrievers are highly sensitive to negative sampling and topic
overlap; near-miss negatives are essential to learn fine-grained decision boundaries. We use a staged
curriculum (BM25/static → in-batch → mined hard) and refresh indices after each epoch to reduce false
negatives and stabilize learning. This setup reflects best practice in the literature and addresses known
brittleness of general-purpose dense models under distribution shift.2

Accessibility. Unlike prompt tuning for LLMs, retrieval adaptation requires dataset construction
at scale (positives, mined near-misses, paraphrases), type-balanced batching, and continuous refresh.
Without this, quality gains are often elusive [23, 24].

2.3 Two-Stage Retrieval for Serving
We adapt a compact dual-encoder retriever for fast "first-stage" retrieval. For enhanced precision, we
optionally apply an off-the-shelf cross-encoder reranker for "second-stage" scoring on the top candidates.

2See Zhan et al. [23] and ANCE [6] on hard negatives; see also findings on update timing in evolving corpora [24].
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This two-stage design balances latency and answer quality and mirrors evidence that late interaction
or cross-encoder rerankers compensate for single-vector limits while keeping latency acceptable [13].
Throughout this paper, ModernBERT (K2-tuned) refers to the domain-specific retrievers produced
by this pipeline using a ModernBERT-based architecture.

3 Evaluation Protocol
Style note. We capitalize metric names (Faithfulness, Answer Relevancy) consistently across text,
tables, and figures. To isolate the retriever’s contribution, we designed a rigorous, preregistered evaluation
protocol.

Shared Evaluation Budget. All systems are compared under identical constraints using the
RAGAS evaluation harness:
• Finance (SEC): retrieval top-K=5; cross-encoder reranker returns the top 3 passages to the

generator.
• Clinical: retrieval top-K=5; single-stage retrieval (no reranker).
• UniProtKB: retrieval top-K=2; single-stage retrieval (no reranker).
• Generator: GPT-4o-mini (OpenAI) with temperature 0.0, nucleus sampling disabled, and

maximum prompt length ≤ 3500 tokens.
• Hardware: AWS t3.large instances (2 vCPUs, 8 GB RAM) with CPU-only inference; batch size

1 for latency traces.
• Baselines: OpenAI text-embedding-3-large; Cohere embed-v4.0; configurations match

provider defaults captured in the PAP.

Benchmarks vs. Business Value. Public leaderboards (e.g., MTEB, BEIR) provide breadth
but also encourage general-purpose scaling. MTEB itself reports that no single embedding method
dominates across tasks, while BEIR highlights out-of-distribution fragility and the enduring strength
of BM25. Our evaluation therefore emphasizes customer- and corpus-specific end-user metrics under
a Shared Evaluation Budget, rather than relying solely on leaderboard-style IR scores [19, 20].

Longer prompts increase TTFT without guaranteeing grounding; retrieval improves quality more effi-
ciently [11].

3.1 Metrics and Terminology
We report the following end-user metrics, which are the primary focus of this study:

• Faithfulness (document-grounding): An answer is faithful if all factual claims are supported by the
retrieved passages. Unsupported or contradictory claims reduce the score.

• Answer Relevancy: The degree to which the answer directly addresses the question, judged on a
calibrated ordinal rubric and mapped to a [0,1] scale.

Faithfulness and Answer Relevancy are computed with RAGAS v1.2 using our domain-specific rubric
prompts. These are model-based judgments (not human annotations). Uncertainty is estimated via a
paired bootstrap over queries and we report 95% BCa confidence intervals (e.g., 10,000 reps; fixed seed).

3.2 Statistical Methods
We assess uncertainty with paired bootstrapping over queries: for each system comparison we draw 10,000
paired replicates (fixed random seed) and report 95% BCa confidence intervals on the mean difference.
Significance is evaluated with a paired Wilcoxon signed-rank test (two-sided, α = 0.05). Holm adjustment
is applied per dataset × metric across the two baseline comparisons (m = 2), and adjusted p-values are
reported alongside raw p-values in Appendix A.

3.3 Experimental Controls and Reproducibility
• Pre-Analysis Plan (PAP): We pre-specified our primary endpoints, hypotheses, statistical methods,

and system configurations in a PAP to prevent p-hacking and ensure methodological rigor. The
blinded PAP identifier is available under NDA.
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• Leakage Controls: We apply document-first splitting and MinHash-based de-duplication to prevent
train/test leakage.

• Rater Protocol: Faithfulness and Answer Relevancy scores are produced with RAGAS (v1.2) using
adjudicated templates derived from our rubric.

• Versioning: All seeds, data splits, and run metadata are versioned for full reproducibility.

4 Empirical Results
We validated our approach on held-out test sets across three specialized domains: clinical trial documenta-
tion, financial filings, and the UniProtKB biological knowledge base. Each evaluation set contains N = 97
unique queries. Our adapted retrievers—ModernBERT models fine-tuned separately on each corpus by K2

(Knowledge Squared)—were compared against strong baselines from OpenAI text-embedding-3-large
and Cohere embed-v4.0.

Table 1 presents the primary results for Faithfulness and Answer Relevancy.

Table 1: Mean scores for Faithfulness and Answer Relevancy under the Shared Evaluation Budget.
The domain-tuned retriever leads on average; the Finance Faithfulness lift vs OpenAI is not
statistically significant (95% CI includes zero).

Dataset System Pipeline Faithfulness Answer Relevancy N

Clinical OpenAI Dense-only 0.8505 0.8628 97
Clinical Cohere Dense-only 0.8625 0.8553 97
Clinical ModernBERT (K2) Dense-only 0.9079 0.9324 97

Finance OpenAI Dense+Cross-Encoder
Reranker

0.7189 0.8986 97

Finance Cohere Dense+Cross-Encoder
Reranker

0.7449 0.8835 97

Finance ModernBERT (K2) Dense+Cross-
Encoder Reranker

0.7830 0.9561 97

UniProtKB OpenAI Dense-only 0.6037 0.8010 97
UniProtKB Cohere Dense-only 0.6439 0.8662 97
UniProtKB ModernBERT (K2) Dense-only 0.7213 0.9368 97

Table 2 and Figure 2 quantify these improvements, showing the mean differences and 95% confidence
intervals. Answer Relevancy gains are statistically significant across domains. Faithfulness gains are
significant for Clinical vs OpenAI and for UniProtKB; the Clinical vs Cohere lift is treated as descriptive
(Holm-adjusted p=0.0539), and Finance vs OpenAI shows a positive interval that does not meet the
Holm-adjusted threshold (p=0.1652).

The domain-tuned model also reduces catastrophic errors and abstentions, a critical operational benefit.
On the clinical set, ModernBERT (K2-tuned) produces 1/97 catastrophic responses versus 5/97 for each
baseline (Table 3); in UniProtKB, OpenAI abstains on 15/97 queries, a rate the adapted retriever cuts to
1/97 (Section 4.2).

4.1 Sensitivity to Catastrophic Errors
In many domains, failing to produce a supported answer is a critical failure. We define a "catastrophic"
error as an unsupported answer or an abstention (e.g., "I don’t know"). Table 3 shows that our adapted
model produces far fewer catastrophic errors on the clinical dataset.

Extending the same diagnostic across corpora shows that the reduction in catastrophic outcomes persists
(Table 4). Finance evaluations record a single catastrophic response for the adapted retriever versus 5/97
for OpenAI and 4/97 for Cohere; UniProtKB sees a 15/97 abstention rate for OpenAI that drops to 1/97
with the K2 retriever.
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Table 2: Per-domain improvements for ModernBERT (K2-tuned): mean differences with 95% BCa
CIs vs. baselines (N=97 per domain).

Dataset Metric vs. OpenAI vs. Cohere

Clinical Faithfulness 0.0575 [0.0203, 0.1120] 0.0454 [0.0135, 0.0957]
Clinical Answer Relevancy 0.0696 [0.0418, 0.1241] 0.0771 [0.0464, 0.1366]

Finance Faithfulness 0.0641 [0.0120, 0.1257] 0.0381 [−0.0201, 0.0996]
Finance Answer Relevancy 0.0575 [0.0264, 0.1145] 0.0726 [0.0327, 0.1378]

UniProtKB Faithfulness 0.1176 [0.0698, 0.1783] 0.0774 [0.0386, 0.1223]
UniProtKB Answer Relevancy 0.1358 [0.0758, 0.2165] 0.0706 [0.0432, 0.1256]

Note: CIs are BCa on mean paired differences (10,000 bootstrap replicates; fixed seed). Significance uses the two-sided
paired Wilcoxon signed-rank test with Holm correction per dataset×metric (m=2). Because the CI targets the mean

difference while the test is rank-based, a CI that excludes 0 may still be marked “ns”.

−4 · 10−2−2 · 10−2 0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

UniProtKB–Cohere (Answer Relevancy)

UniProtKB–Cohere (Faithfulness)

UniProtKB–OpenAI (Answer Relevancy)

UniProtKB–OpenAI (Faithfulness)

Finance–Cohere (Answer Relevancy)

Finance–Cohere (Faithfulness)

Finance–OpenAI (Answer Relevancy)
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Mean difference (ModernBERT (K2-tuned) − baseline), unitless

Figure 2: Forest plot of mean differences (ModernBERT − baseline). Markers denote means;
whiskers denote 95% BCa CIs. Values to the right of the zero line (shaded region) indicate
improvement. “ns” = not significant under two-sided paired Wilcoxon signed-rank with Holm
correction (α = 0.05); adjusted p-values in Appendix A.

Table 3: Sensitivity analysis (Clinical, N = 97). ModernBERT (K2-tuned) leads under all treatments
and exhibits a substantially lower catastrophic error rate.

Faith.
(mean)

Faith.
(5% trim)

Faith.
(non-zero)

Ans. Rel.
(mean)

Catastrophic
(#/%)

ModernBERT (K2) 0.9079 0.9296 0.9174 0.9324 1 / 1.0%
Cohere 0.8625 0.8951 0.9094 0.8553 5 / 5.2%
OpenAI 0.8505 0.8820 0.8967 0.8628 5 / 5.2%

Table 4: Catastrophic error counts (Faithfulness=0) across datasets. Percentages are relative to 97
queries per set.

Dataset System Catastrophic (#/%)

Clinical ModernBERT (K2-tuned) 1 / 1.0%
Clinical OpenAI 5 / 5.2%
Clinical Cohere 5 / 5.2%

Finance ModernBERT (K2-tuned) 1 / 1.0%
Finance OpenAI 5 / 5.2%
Finance Cohere 4 / 4.1%

UniProtKB ModernBERT (K2-tuned) 1 / 1.0%
UniProtKB OpenAI 15 / 15.5%
UniProtKB Cohere 5 / 5.2%

4.2 Qualitative Analysis: Row-Level Debugging
Aggregate metrics are complemented by examining individual failures. In the UniProtKB domain, OpenAI
abstained on 15/97 queries, whereas the adapted retriever reduces abstentions to 1/97. This pattern was
consistent across domains and highlights the practical benefit of domain tuning. For example:
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• Clinical Query (Idx 22): Both baselines abstained. Our model retrieved the correct combined-
therapy context, enabling the generator to produce the supported description.

• UniProtKB Query (Idx 19): OpenAI abstained. Our model retrieved the passage detailing the
protein’s domain interaction, which the generator then summarized.

5 Discussion
5.1 A Practical Response to Theoretical Limits
LIMIT shows that single-vector models face dimension-dependent ceilings for representing arbitrary top-k
relevance combinations. Our results indicate that, in applied settings, a combination of (i) compact,
domain-tuned dual encoders and (ii) a second-stage cross-encoder reranker delivers higher Answer
Relevancy and Faithfulness under shared budgets. This specialize-not-just-scale recipe narrows the query
space to the domain’s semantics and reintroduces higher-resolution comparisons where needed, mitigating
the single-vector bottleneck without incurring large inference costs.3

5.2 Design Rationale: Why Domain Tuning Works
We attribute the observed gains to several factors:

1. Targeted Supervision: A moderate number of high-quality, domain-specific examples effectively
shapes the embedding space toward relevant distinctions.

2. Domain Alignment: Fine-tuning reshapes embeddings to match the semantics of the target domain,
teaching the model the specific meanings of jargon, acronyms, and symbols.

3. Learning to Discriminate: A staged hard-negative curriculum teaches fine-grained relevance
boundaries and mitigates false-negative drag.

4. RAG Efficiency: Better retrieval leads to more concise, relevant prompts, which can reduce
Time-to-First-Token (TTFT) and overall computational load.

5.3 Scale vs. Specialization
While provider embedding models are proprietary, it is reasonable to infer they are orders of magnitude
larger than the compact ModernBERT family used here. Our results demonstrate that under a shared
budget, specialization can be more effective than scale alone.

Table 5: Comparison of Specialized vs. General-Purpose Encoders

Dimension ModernBERT (K2-tuned) General-purpose encoders

Accuracy (this study) Higher within-domain scores on
Faithfulness and Answer Relevancy under
shared budgets.

Strong general-purpose performance; may
lack precision on fine-grained domain
tasks.

Latency & Cost Compact encoder yields lower retrieval
latency and cost, especially in
on-prem/VPC deployments.

Larger encoders; latency and cost vary by
SKU and deployment setup.

Deployment Supports on-prem/VPC training and
serving, offering data locality and privacy.

Often API-based; private options vary.

Adaptability Versioned runs enable frequent,
reproducible retraining as the corpus
evolves.

Update cadence is opaque; domain
adaptation options may be limited.

5.4 Operational Considerations
Beyond accuracy, our pipeline is designed for production environments, incorporating:

3As suggested by LIMIT, multi-vector or cross-encoder reranker stages can address cases that a single vector cannot
represent; we adopt this in our rerank-K stage [12, 13].
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• Monitoring and Alerting: Instrumentation for latency, error rates, and data drift.

• Auditability and Governance: Immutable run records, artifact-level provenance, and built-in
support for PII/PHI redaction and secrets management.

• Flexibility: Compatible with common vector stores (FAISS, Elasticsearch, pgvector/PostgreSQL)
and deployable in any cloud or on-prem environment.

6 Conclusion
For specialized RAG applications, domain-adapted compact retrievers can significantly improve Faithful-
ness and Answer Relevancy compared to strong, much larger, general-purpose alternatives under fixed
budgets. The gains are most pronounced in domains with unique terminology and fine-grained semantic
distinctions. Our end-to-end pipeline provides a reproducible, efficient, and operationally robust method
for achieving these improvements.

Contribution Summary. We contribute a retrieval adaptation framework that: (1) ingests arbitrary
corpora; (2) builds dense+sparse indices; (3) trains compact dual-encoders via a hard-negative curriculum
with index refresh; (4) optionally adds a cross-encoder reranker; (5) evaluates under a shared budget
with preregistered endpoints; and (6) closes the loop by capturing real interaction signals (queries and
abstention flags) to mine harder negatives and auto-refresh models as the corpus and usage evolve. This
yields accuracy and latency/cost competitive with much larger general models on in-domain tasks, while
remaining deployable in VPC/on-prem environments [24].

Implications for Practitioners
• For CTOs/VPs of Engineering: Adapted compact retrievers can improve answer quality while

simultaneously reducing latency and cost, especially in private cloud or on-prem deployments.

• For ML Engineers: The hard-negative curriculum is a powerful technique for reducing near-miss
retrieval errors and improving grounding, which in turn enables more efficient use of the generator’s
context window.

Limitations & Scope. These results are demonstrated on three specific domains under the reported
Shared Evaluation Budget. Performance may vary with different budgets, domains, or provider models.
Potential threats to validity, such as query selection bias, are mitigated through our preregistered
evaluation design.
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A Significance Summary (Holm-Adjusted p-values)

Dataset Baseline Metric p (Wilcoxon) p (Holm)

Finance OpenAI Faithfulness 0.0826 0.1652
Finance OpenAI Answer Relevancy 9.846 × 10−6 3.938 × 10−5

Finance Cohere Faithfulness 0.2451 0.2451
Finance Cohere Answer Relevancy 0.001829 0.005487

Clinical OpenAI Faithfulness 0.0228 0.0456
Clinical OpenAI Answer Relevancy < 10−4 < 10−4

Clinical Cohere Faithfulness 0.0539 0.0539
Clinical Cohere Answer Relevancy < 10−4 < 10−4

UniProtKB OpenAI Faithfulness 1.637 × 10−4 3.274 × 10−4

UniProtKB OpenAI Answer Relevancy 2.804 × 10−8 8.412 × 10−8

UniProtKB Cohere Faithfulness 4.436 × 10−4 4.436 × 10−4

UniProtKB Cohere Answer Relevancy 4.441 × 10−14 1.776 × 10−13

B Dataset Cards (Summary)
• Clinical. Clinical trial documentation; sources and licenses recorded; redactions applied where

required. Provenance retained per chunk. Detailed card available under NDA.

• Finance. SEC filings (e.g., 10-K); sources and licenses recorded; sensitive fields redacted. Provenance
retained per chunk. Detailed card available under NDA.

• UniProtKB. Biological knowledge base; subset description, licenses, and redactions recorded.
Provenance retained per chunk. Detailed card available under NDA.
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